测定多肽链C末端的氨基酸试剂
1、氢硼化锂还原c端为氨基醇,肽链水解后层析分析
2、羧肽酶作用c端
3、肼解法:(肼试剂)肼解后,一条肽链只有一个c端氨基酸游离下来。将游离下来的c端氨基酸与DNFB(二硝基氟苯)反应生成DNP—氨基酸(用以层析分析),剩余肼化肽链部分与苯甲醛反应生成不溶于水的二亚苄衍生物。
盖布瑞尔伯胺合成反应的传统Gabriel合成
邻苯二甲酰亚胺的钠盐或钾盐与一级卤代烷发生亲核取代反应(构型翻转),生成烷基邻苯二甲酰亚胺。二级卤代烷无法行此反应。由于邻苯二甲酰亚胺的氮上只有一个氢原子,只能引入一个烷基,故该反应是制取较纯净的一级胺的常用方法。
反应最后用酸处理,使一级胺以成盐的形式纯化。若水解很困难,可以用肼的水溶液或乙醇溶液逆流反应(Ing-Manske法),使取代酞酰亚胺肼解,产生邻苯二甲酰肼沉淀和一级胺。以上的两种处理方法都有不足,水解法产率低且会伴随副产物的生成,而肼解法中分离邻苯二甲酰肼十分麻烦(邻苯二甲酰肼因为水溶性非常好,若产生的胺酯溶性好则非常容易水洗除去,其收率通常可以达到80%以上)。因此还有其他使胺自邻苯二甲酰亚胺解离的方法。
用Gabriel合成制取氨基酸时,如果直接用α-卤代酸,则酰亚胺盐会与羧酸反应,生成相应的羧酸盐。因此可以用α-卤代酯作原料,将羧基保护,等反应后水解时,酯比酰胺更容易水解,羧基也就自然游离出来。
常用于蛋白质多肽链N端.C端测定的方法有几种
(1)N-末端测定 A.二硝基氟苯(FDNBDNFB):1945Sanger提重要贡献DNP-氨基酸用机溶剂抽提通层析位置鉴定何种氨基酸Sanger用测定胰岛素N末端别甘氨酸及苯丙氨酸B.氰酸盐:1963Stank及Smyth介绍种测定N末端新步骤:由于乙内酰脲氨基酸带电荷用离交换层析与游离氨基酸离所乙内酰脲氨基酸再盐酸水解重新游离氨基酸鉴别氨基酸即解N-末端何种氨基酸C.二甲基氨基萘磺酰氯:1956Hartley等报告种测定N-末端灵敏采用1-二甲基氨基萘-5-磺酰氯简称丹磺酰氯与游离氨基末端作用类似于SangerDNFB产物磺酰胺衍物丹磺酰链酸具强烈黄色荧光优点灵敏性较高(比FDNB提高100倍品量于1毫微克)及丹磺酰氨基酸稳定性较高(酸水解稳定性较DNP氨基酸高)用纸电泳或聚酰胺薄膜层析鉴定(2)C-末端析A.肼解:测定C-末端用肽溶于水肼100℃进行反应结羧基末端氨基酸游离氨基酸状释放其余肽链部与肼氨基酸肼羧基末端氨基酸采用抽提或离交换层析其进行析羧基末端氨基酸侧链带酰胺冬酰胺谷氨酰胺则肼解能产游离羧基末端氨基酸外肼解注意避免任何少量水解免释氨基酸混淆末端析B.羧肽酶水解:羧肽酶专性水解羧基末端氨基酸根据酶解专性同区羧肽酶A、BC应用羧肽酶测定末端需要事先进行酶力实验便选择合适酶浓度及反应间使释放氨基酸主要C末端氨基酸
fmoc-thi-oh可用于什么多肽合成
多肽合成方法:
酰基叠氮物法早在1902年,Theodor Curtius就将酰基叠氮物法引入到肽化学中,因此它是最古老的缩合方法之一。在碱性水溶液中,除了与酰基叠氨缩合的游离氨基酸和肽以外,氨基酸酯可用于有机溶剂中。与其他许多缩合方法不同的是,它不需要增加辅助碱或另一等当量的氨基组分来捕获腙酸。 长期以来,一直认为叠氮物法是唯一不发生消旋的缩合方法,随着可选择性裂解的氨基酸保护基引入,该方法经历了一次大规模的复兴。该方法的起始原料分别是晶体状的氨基酸酰肼或肽酰肼64,通过肼解相应的酯很容易得到。在-10℃的盐酸中,用等当量的亚硝酸钠使酰肼发生亚硝化而转化为叠氮化物65,依次洗涤、干燥,然后与相应的氨基组分反应。有些叠氮化物可用冰水稀释而沉淀出来。 二苯磷酰基叠氮化物(DPPA)也可以用于酰基叠氮化物的合成。Honzl-Rudinger方法采用亚硝酸叔丁作为亚硝化试剂,并且使叠氮缩合反应可在有机溶剂中进行。因酰基叠氮化物的热不稳定性,缩合反应需在低温下进行。当温度较高时,Curtius重排,即酰基叠氮转化为异氰酸酯的反应成为一个主要的副反应,最终导致生成副产物脲。由于反应温度低(如4℃)而导致反应速率相当慢,使得肽缩合反应通常需要几天才能完全。 对于较长的N端保护的肽链,酯基的肼解一般比较困难,因此,使用正交的N保护肼衍生物是一种选择。在肼基的选择性脱除后,按倒接(backing-off)策略组合的肽片段可以用于叠氮缩合。如前所述,虽然叠氮法一直被认为是消旋化倾向最小的缩合方法,但在反应中,过量的碱会诱发相当大的消旋。因此,在缩合反应期间要避免与碱接触,例如,氨基组分的铵盐应采用N,N-二异丙胺或N-烷基吗啉代替三乙胺来中和。 虽然有上述局限性,但该方法仍很重要,尤其对于片段缩合而言,因为该方法具有较低的异构化倾向,适用于羟基未保护丝氨酸或苏氨酸组分时,Nˊ保护的本行酰肼还具有多种用途。
酸酐法在多肽合成中,最初考虑应用酸酐要追溯到1881年Theodor Curtius对苯甲酰基氨基乙酸合成的早期研究。从氨基乙酸银与苯甲酰氯的反应中,除获得苯甲酰氨基乙酸外,还得到了BZ-Glyn-OH(n=2-6)。早期曾认为,当用苯甲酰氯处理时,N-苯甲酰基氨基酸或N-苯甲酰基肽与苯甲酸形成了活性中间体不对称酸酐。 大约在70年后,Theodor Wieland利用这些发现将混合酸酐法用于现代多肽合成。目前,除该方法外,对称酸酐以及由氨基酸的羧基和氨基甲酸在分子内形成的N-羧基内酸酐(NCA,Leuchs anhydrides)也用肽缩合。最后应该提到,不对称酸酐常常参与生化反应中的酰化反应。
混合酸酐法有机羧酸和无机酸皆可用于混合酸酐的形成。然而,仅有几个得到了广泛的实际应用,多数情况下,采用氯甲酸烷基酯。过去频繁使用的氯甲酸乙酯,目前主要被氯甲酸异丁酯所替代。由羧基组分和氯甲酸酯起始形成的混合酸酐,其氨解反应的区域选择性依赖依赖于两个互相竞争的羰基的亲电性和(或)空间位阻。在由N保护的氨基酸羧酸盐(羧基组分)和氯甲酸烷基酯(活化组分,例如源于氯甲酸烷基酯)形成混合酸酐时,亲核试剂胺主要进攻氨基酸组分的羧基,形成预期的肽衍生物,并且释放出游离酸形式的活性成分。当应用氯甲酸烷基酯(R1=异丁基、乙基等)时,游离的单烷基碳酸不稳定,立即分解为二氧化碳和相应的醇。然而,对于亲核进攻的区域选择性,也有一些相反的报道,产物为氨基甲酸酯和原来的N保护氨基酸组分。 为了形成混合酸酐,将N保护的氨基酸或肽分别溶于二氯甲烷、四氢呋喃、二氧六环、乙腈、乙酸乙酯或DMF中,用等当量的三级碱(N-甲基哌啶、N-甲基吗啉、N-乙基吗啉等)处理。然后,在-15℃--5℃,剧烈搅拌的同时加入氯甲酸烷基酯以形成不对称酸酐(活化)。经短时间活化后,加入亲核性氨基酸组分。如果作为铵盐使用(需要更多的碱),必须避免碱的过量使用。如果严格按照以上的反应条件,混合酸酐法很容易进行,是最有效的缩合方法之一。
对称酸酐法Nα-酰基氨基酸的对称酸酐是用于肽键形成的高活性中间体。与混合酸酐法相反,它与胺亲核试剂的反应没有模棱两可的区域选择性。但肽缩合产率最高,为50%(以羧基组分计)。 虽然由对称酸酐氨解形成的游离Nα-酰基氨基酸可以和目标肽一起,通过饱和碳酸氢钠溶液萃取回收,但在最初,这种方法的实用价值极低。对称酸酐可以用Nα-保护氨基酸与光气,或方便的碳二亚胺反应制得。两当量的Nα-保护氨基酸与-当量的碳二亚胺反应有利于对称酸酐的形成,对称酸酐可以分离出来,也可不经纯化而直接用于后面的缩合反应。基于Nα-烷氧羰基氨基酸的对称酸酐对水解稳定,可采用类似上述纯化混合酸酐的方法进行纯化。 由于Boc-保护氨基酸的商品化和合理的价格,在肽链的逐步延长中,使用对称酸酐法日益受到重视。虽然可以买到晶状的对称酸酐,但原位制备仍然是一种不错的选择。
碳二亚胺法碳二亚胺类化合物可用于氨基和羧基的缩合。在该类化合物中N,Nˊ-二环己基碳二亚胺(DCC)相对便宜,而且可溶于肽合成常用的溶剂。在肽键形成期间,碳二亚胺转变为相应的脲衍生物,N,Nˊ-二环己基脲可以从反应液中沉淀出来。显然,碳二亚胺活化后的活性中间体氨解和水解速率不同,使肽合成能在含水介质进行。经几个课题组的大量研究,确立了以碳二亚胺为缩合剂的肽缩合反应机理,羧酸根离子加成到质子化的碳二亚胺,形成高活性的O-酰基脲;虽然还没有分离出这个中间体,但通过非常类似的稳定化合物推断了它的存在。O-酰基脲与氨基组分反应,产生被保护的肽和脲衍生物。或者,与质子化形式处于处于平衡状态的O-酰基异脲,被第二个羧酸酯亲核进攻,产生对称的氨基酸酐和N,Nˊ-二取代脲。前者与氨基酸反应得到肽衍生物和游离氨基酸。在碱催化下,使用DCC的副反应使酰基从异脲氧原子向氮原子转移,产生N-酰基脲71,它不再发生进一步的氨解。不仅过量的碱可催化O-N的酰基转移,而且碱性的氨基组分或碳二亚胺也可催化该副反应。 另外,极性溶剂有利于这一反应途径。/ol
生物化学关于氨基酸的排列顺序的问题 急
将这六个排成1到6号位置,根据以上的信息加上查的资料推理如下:DNFB检测N端,故N端(1号)肯定是Val。肼解会降解多肽直到C端那个氨基酸,因此C端(6号)是Phe。胰蛋白酶水解Arg和Lys的C端,而同时做了坂口反应(检测Arg)说明肯定是Arg的C端被切割。那么,根据排列来看单独1个的是放在最后面才能成立,因此倒数第二(5号)个肯定是Arg。之后用了溴化氢,处理的是Met的C端,能切成3肽,说明Met一定在第3号位置。暴露的新的N端是第4号,因此多出了一个Ala。最后剩下的2号位置填入Arg,恰好满足切成2肽,3肽和1个氨基酸。
因此,顺序是:Val-Arg-Met-Ala-Arg-Phe
常用于蛋白质多肽链N端.C端测定的方法有几种?基本原理是什么
(1)N-末端测定 A.二硝基氟苯法(FDNB,DNFB):1945年Sanger提出此方法,是他的重要贡献之一。DNP-氨基酸用有机溶剂抽提后,通过层析位置可鉴定它是何种氨基酸。Sanger用此方法测定了胰岛素的N末端分别为甘氨酸及苯丙氨酸。B.氰酸盐法:1963年Stank及Smyth介绍了一种测定N末端的新方法,步骤如下:由于乙内酰脲氨基酸不带电荷,因此可用离子交换层析法将它与游离氨基酸分开,分离所得的乙内酰脲氨基酸再被盐酸水解,重新生成游离的氨基酸,鉴别此氨基酸即可了解N-末端是何种氨基酸。C.二甲基氨基萘磺酰氯法:1956年Hartley等报告了一种测定N-末端的灵敏方法,采用1-二甲基氨基萘-5-磺酰氯,简称丹磺酰氯。它与游离氨基末端作用,方法类似于Sanger的DNFB法,产物是磺酰胺衍生物。丹磺酰链酸具有强烈的黄色荧光。此法优点为灵敏性较高(比FDNB法提高100倍,样品量小于1毫微克分子)及丹磺酰氨基酸稳定性较高(对酸水解稳定性较DNP氨基酸高),可用纸电泳或聚酰胺薄膜层析鉴定。(2)C-末端分析A.肼解法:这是测定C-末端最常用的方法。将多肽溶于无水肼中,100℃下进行反应,结果羧基末端氨基酸以游离氨基酸状释放,而其余肽链部分与肼生成氨基酸肼。这样羧基末端氨基酸可以采用抽提或离子交换层析的方法将其分出而进行分析。如果羧基末端氨基酸侧链是带有酰胺如天冬酰胺和谷氨酰胺,则肼解时不能产生游离的羧基末端氨基酸。此外肼解时注意避免任何少量的水解,以免释出的氨基酸混淆末端分析。B.羧肽酶水解法:羧肽酶可以专一性地水解羧基末端氨基酸。根据酶解的专一性不同,可区分为羧肽酶A、B和C。应用羧肽酶测定末端时,需要事先进行酶的动力学实验,以便选择合适的酶浓度及反应时间,使释放出的氨基酸主要是C末端氨基酸。
主题测试文章,只做测试使用。发布者:氨基酸肥料,转转请注明出处:https://www.028aohe.com/47736.html