如何防止氨基酸降解(如何防止氨基酸降解?)

氨基酸为什么要去保护

1 反刍动物含硫氨基酸保护的意义和方法原理含硫氨基酸(SAA)主要指胱氨酸、半胱氨酸和蛋氨酸。反刍动物获得含硫氨基酸有三种途径。一是来源于日粮蛋白质,日粮蛋白质在瘤胃中可被微生物降解约60%-80 %,仅有20%-40%的蛋白质进入真胃和小肠;二是来源于反刍动物瘤胃硫素再循环,瘤胃微生物利用饲料和唾液中的含硫化合物(包括SAA)经千一磷酸硫酸途径(ASP)和3一磷酸腺苷5一磷酸硫酸途径(PM)合成SAA,未被细菌利用的部分含硫化合物则为瘤胃壁迅速吸收,并被氢化为硫酸盐而分布于血浆和体液中,血浆中的硫酸盐可经唾液分泌而重新返回瘤胃,开始新的循环而到达大肠;三是反刍动物内源周转蛋白质中的SAA,内源周转蛋白质中含有相当数量的SAA。Nasset (1965)首次发现,动物的小肠食糜中有大量内源蛋白质存在,而且其数量惊人,足可使残余的外源氨基酸(饲料来源)稀释79倍。卢德勋(1986)运用多元回归分析方法,采用连续灌注和双同位素标记技术(N15和H3)测定了羊消化道内源蛋白质的周转量,得出相似的结论。1.1 含硫氨基酸保护的意义 研究表明,即使瘤胃微生物蛋白质合成达到最大程度,但进入小肠的蛋白质和氨基酸仍难以满足现代高产奶牛的产奶需要,必需增加进入小肠的真蛋白质和氨基酸的量。这就需要对过瘤胃蛋白质采取保护措施,而蛋白质的过瘤胃保护存在诸多的局限性。因此,人们把研究的重点转移到过瘤胃氨基酸保护上。许多资料表明,含硫氨基酸在反刍动物生产中具有重要作用,可使奶牛增加奶产量,提高奶中乳蛋白、总固形物比例;可提高肉牛日增重(ADG)和饲料转化效率(FCR);绵羊补饲含硫氨基酸可提高目增重、羊毛生长速度;可提高山羊口增重和绒的含流水平。在SAA来源的前两个途径中,由于瘤胃微生物对饲料蛋白质中SAA的利用,导致进入真胃和小肠的过瘤胃SAA数量减少,大大降低了其生物学效价。为了防止SAA在瘤胃内被微生物降解而降低其生物学效价,使之能被反刍动物充分吸收利用,众多学者对SAA过瘤胃保护(RPSAA)技术进行了探讨。1.2 SAA保护方法原理 过瘤胃保护性氨基酸又称瘤胃分路氨基酸,就是将AA以某种方式修饰或保护起来,以免在瘤胃内被微生物降解。这类AA产品应公认安全,AA必须是限制性氨基酸,在小肠中能够被有效吸收。AA过瘤胃保护原理根据保护方法可分为以下几类:第一类为氨基酸类似物、衍生物、聚合物。此类保护性SAA主要是蛋氨酸羟基类似物(MHA)和液体蛋氨酸羟基类似物(DL-2一羟基一4一甲硫丁酸枣HMB)。液体HMB目前用作包被或微囊蛋氨酸的替代品,HMB的钙盐即MⅡA,已得到广泛研究。此法的氨基酸过瘤胃保护原理是,当MIM经过瘤胃时其羟基分解变成氨基,完成从类似物到蛋氨酸的转变,从而达到过瘤胃保护的效果,使蛋氨酸可顺利通过瘤胃到达后肠段消化道,极反刍动物消化利用,其保护率可达80 %。第二类为包被氨基酸,也称为包衣氨基酸(RPAA)。此法一是用脂肪酸/pH敏感聚合物的混合物进行表面包被;二是使用含脂肪或饱和脂肪酸及矿物质混合物作表面涂层或基质。另外,氨基酸螫合物也是RPAA的来源。Rogffi试验表明:蛋氨酸和赖氨酸的胶囊包被在pH值为5.4时稳定性可达94%,在模拟的肠道环境中(pH=2.9)两种氨基酸的释放率为94%。ASh等(1987)将DL一蛋氨酸、高熔点的牛脂(硬脂酸甘油酯)和高岭土(膨润土)按2:7(Sib一bald等 1968采用 2: 6: 2)的比例在 60℃下混合,然后将所得混合物放在冷冻机中凝固,在饲喂前用粉碎机将混合物粉碎,再在搅拌机中和糖蜜混合作成饲料饲喂动物。其过瘤胃原理是利用瘤胃pH值为6左右和皱胃pH值为2左右的差别,选择中性环境中较稳定而在酸性条件下容易分解的材料包埋氨基酸,被包埋的氨基酸在瘤胃中不能被消化利用,而在真胃中能被消化利用。根据氨基酸螫合物可提高矿物质的生物利用率这一原理,人们还成功地制造了蛋氨酸锌和赖氨酸锌作为RPAA的来源。第三类为氨基酸真胃灌注。即通过真胃瘘管将SAA一次或连续灌入反刍动物真胃(十二指肠)中的方法,也称之为完全过瘤胃方法,目的是使SAA完全避开瘤胃微生物的作用而直接到达后肠段消化道。2 SAA过瘤胃保护的特点SAA经过瘤胃保护处理后绝大部分可安全通过瘤胃进人后肠段消化道,为反刍动物消化吸收。其各类保护方法各有特点。由于胱氨酸和半胱氨酸保护价格昂贵,因此SAA的保护主要集中在蛋氨酸上。蛋氨酸羟基类似物(MHA)、衍生物和聚合物可安全通过瘤胃,针对瘤胃与皱胃pH的差异,实现过瘤胃后才开始释放SAA。这种包被的氨基酸产品有很高的过瘤胃率,是提高过瘤胃蛋氨酸量的有效方法。由于包被层依赖于严格的pH值,这些产品与青贮料混合使用时会降低其有效性,而且在瘤胃pH值较低的饲养条件下(如高精料日粮),这类产品的利用受到限制。目前应用最有前途的是包衣蛋氨酸产品,该技术将工艺和材料相结合,对蛋氨酸进行包被或基埋,可较好地防瘤胃降解,在小肠中有很好的释放性。此类产品利用了反刍动物不同消化部位pH值生理条件的差别而设计,产品在PH为5. 4左右的瘤胃环境内是稳定的,到达真胃后,在pH为2.4的条件下,依靠小肠消化酶的作用,蛋氨酸可游离出来被动物吸收利用。这种过瘤胃蛋氨酸产品的缺陷是在痛胃内仅有部分稳定,过瘤胃后氨基酸的释放也较少,蛋氨酸的表观生物效价(过瘤胃率X小肠释放率)要比利用聚合物包被的蛋氨酸的过瘤胃率低。蛋氨酸金属螫合物产品稳定性高,能完好地通过瘤胃,并在小肠被直接吸收,不仅可以提供必需的氨基酸,同时也是一种安全有效的微量元素补充的方法。但是这种产品易引起日粮高锌,当添加典型水平的氨基酸螫合锌时,日粮中锌的浓度有时会高于正常水平10-20倍;另外蛋氨酸锌成本较高,限制了其广泛应用。真胃灌注法,由于受方法可操作性的限制,因此只能用来作研究的试验手段,无法应用于大规模实际生产。3 过瘤胃SAA(RPSAA)应用研究进展3.l 奶牛 过瘤胃保护蛋氨酸可以提高乳蛋白的合成,但对奶产量、乳脂肪量、乳脂率和4%FCM的影响结论不一。MHA在低粗纤维饲粮中,能提高乙酸与丙酸比例,产奶量提高12%-18%。肖定汉(1992)通过给奶牛饲喂保护性蛋氨酸,结果显示奶产量增加4 %-8%,牛奶蛋白质增加 14 %。据美国《乳业学报》报道,当奶牛的基础日粮以玉米为主时,蛋氨酸和赖氨酸是酪蛋白合成的限制性氨基酸,过瘤胃蛋氨酸(RPMet)和过瘤胃赖氨酸(RPha)可增加氨基酸在小肠的吸收,促进乳蛋白的合成,但对其他指标无影响。Ymp等(1986)用以玉米青贮、首猪草粉为基础的日粮添加包被蛋氨酸饲喂奶牛后,得到与前者完全不同的结论。这很可能是由于日粮蛋白质来源及特性不同造成的。大量的研究证明,日粮蛋白质来源及特性是决定进入动物十二指肠氨基酸数量和组成的重要因素(Cecava等,1990;Wlllns等,1991;Me。hen等,1992)。奶牛日粮中添加过瘤胃保护蛋氨酸还可以提高血液蛋氨酸水平(Rog6。等,1986),同时添加RPMet和RPlys效果更佳。这可能与奶牛的第一限制性氨基酸是蛋氨酸,第二限制性氨基酸为赖氨酸,赖氨酸能促进奶牛对蛋氨酸的利用有关。蛋氨酸锌已成功作为过瘤胃蛋氨酸的来源,可以提高奶牛泌乳量;而且也用于提高矿物质的生物利用率,提高动物机体免疫机能和降低奶中体细胞数(Spears,1996)。3.2肉牛和犊牛 在育肥牛饲料中添加蛋氨酸锌,牛口增重提高3.23 %,饲料转化率提高3.87%,服体品质明显改善。阉牛饲喂蛋氨酸锌,肌肉大理石纹评分较高,皮下脂肪较多,肾、骨盆和心脏的脂肪比对照组提高10.5%。黄牛饲用蛋氨酸锌效果更明显,在基础口粮中添加 500 g蛋氨酸锌,试验期 60 d,比对照组提高增重 20.7 %,饲料转化效率提高15.93%。犊牛日粮中添加MHA,日增重提高11%。3.3 绵羊和山羊 绵羊皱胃灌注及十二指肠灌注蛋氨酸可促进羊毛生长,提高血浆蛋氨酸水平(Munneks,1991)。Reis (1988,1990)研究表明,经瘦管向绵羊皱胃灌注蛋氨酸(2 g/d)和等摩尔高半眈氨酸时,其净毛生长为处理前的157 %和167%。给美利奴羊皱胃灌注5种(28 g/d)或 10种EAA(都含有 3 g DL一蛋氨酸),可使羊毛产量分别比对照组增加 48%和 86%。在绵羊日粮中添加包被的蛋氨酸可促进羊毛生长,提高日增重和血浆氨基酸水平,还能改善羊毛的理化性能。在美利奴羊日粮中添加 MHA和包被的蛋氨酸,结果净毛率分别比对照组提高19.0%和 17.5%。斯钦(1993)用棕桐油和动物油包被的蛋氨酸对绵羊进行补饲结果显示,可提高血浆FAA和跳氨酸含量,明显提高了日增重和羊毛生长速度。日粮中添加保护蛋氨酸在山羊的试验中也得到很好的结果。Sendal指出,保护蛋氨酸可显著增加山羊体内的N沉积量和体蛋白的合成量。4 过瘤胃合流氨基酸保护应用研究展望大量的资料显示,使用RPMet可以提高奶产量,改善奶牛健康;绵羊补充RPMet可显著加快羊毛生长和提高羊毛产量。因此,今后如果能在SAA的最佳包被处理方法、氨基酸复合制品的利用及补饲方法等方面进行更深入的研究,并及时地应用于反刍动物生产,必然会给饲养业带来巨大的经济效

氨基酸的分解问题

外源蛋白有抗原性,需降解为氨基酸才能被吸收利用。只有婴儿可直接吸收乳汁中的抗体。可分为以下两步: 1. 胃中的消化:胃分泌的盐酸可使蛋白变性,容易消化,还可激活胃蛋白酶,保持其最适pH,并能杀菌。胃蛋白酶可自催化激活,分解蛋白产生蛋白胨。胃的消化作用很重要,但不是必须的,胃全切除的人仍可消化蛋白。 2. 肠是消化的主要场所。肠分泌的碳酸氢根可中和胃酸,为胰蛋白酶、糜蛋白酶、弹性蛋白酶、羧肽酶、氨肽酶等提供合适环境。肠激酶激活胰蛋白酶,再激活其他酶,所以胰蛋白酶起核心作用,胰液中有抑制其活性的小肽,防止在细胞中或导管中过早激活。外源蛋白在肠道分解为氨基酸和小肽,经特异的氨基酸、小肽转运系统进入肠上皮细胞,小肽再被氨肽酶、羧肽酶和二肽酶彻底水解,进入血液。所以饭后门静脉中只有氨基酸。 1. 内源蛋白降解速度不同,一般代谢中关键酶半衰期短,如多胺合成的限速酶-鸟氨酸脱羧酶半衰期只有11分钟,而血浆蛋白约为10天,胶原为1000天。体重70千克的成人每天约有400克蛋白更新,进入游离氨基酸库。 2. 内源蛋白主要在溶酶体降解,少量随消化液进入消化道降解,某些细胞器也有蛋白酶活性。内源蛋白是选择。望采纳!

如何防止或减少植物中氨基酸的流失?

在植物生长过程中没有可谓的氨基酸流失。在炒菜时,多少都会有一些氨基酸流失,如精氨酸、赖氨酸等,最好的方法是炒菜时不要干炒,加少量的的水,等烧得差不多了再放盐,提前放盐会导致氨基酸的流失。烧好了,放少量淀粉镶嵌。

如何防止氨基酸降解(如何防止氨基酸降解?)

主题测试文章,只做测试使用。发布者:氨基酸肥料,转转请注明出处:https://www.028aohe.com/39964.html

(0)
氨基酸肥料氨基酸肥料
上一篇 2022年10月25日 上午12:04
下一篇 2022年10月25日 上午12:41

相关推荐

  • 氨基酸脱羧酶培养基(细菌的分解与合成代谢产物的意义)

    氨基酸脱羧酶培养基 特别提醒:庆大霉素能造成耳聋被禁用? 庆大霉素由来:它是为数不多的热稳定性的抗生素,因而广泛应用于培养基配置。中国独立自主研制成功的广谱抗生素,是新中国成立以来的伟大科技成果之一。它开始研制于1967年,成功鉴定在1969年底,取名“庆大霉素”,意指庆祝“九大”以及庆祝工人阶级的伟大。 庆大霉素系从放线菌科单孢子属发酵培养液中提得,系碱性…

    肥料资讯 2022年8月26日
    00
  • 隆化贴吧(隆化贴吧2022年2月8日)

    百度贴吧查询! 铜梁中学 重庆一中 合川中学 重庆南开中学 江津中学 重庆交通大学 重庆师范大学涉外商贸学院 四川外语学院 重庆邮电大学 重庆一外 涪陵实验中学 西师附中 綦江中学 重庆八中 重庆育才中学 聚奎中学 巴县中学 巴蜀中学 渝北中学 永川中学 重庆清华中学 萱花中学 重庆工商大学 重庆29中 北山中学 重庆18中 重庆三中 西南大学 求精中学 涪…

    肥料资讯 2022年10月2日
    00
  • 氨基酸序列除以3(关于WIPO ST26 序列表制作的一些tips)

    氨基酸序列除以3 生物学家劳伦斯·赫斯特和斯蒂芬·弗里兰在20世纪90年代末把天然基因密码和计算机随机产生的几百万组密码拿去比对,结果轰动一时。他们想知道,如果发生点突变这种把一个字母换掉的变异,哪一套密码系统能保留最多正确的氨基酸,或将它代换成另一个性质相似的氨基酸。 结果他们发现,天然的基因密码最经得起突变的考验。点突变常常不会影响氨基酸序列,而如果突变…

    肥料资讯 2022年8月14日
    00
  • 香瓜学名叫啥

         回答香瓜的学名就叫做香瓜,别称为甜瓜、白兰瓜、华莱士瓜等。香瓜是世界十大水果之一,具有遗传多态性,其果实大小、形状、果皮与果肉的颜色等各方面都具有丰富的变异类型。香瓜含有丰富的蛋白质、脂肪、碳水化合物、苹果酸、维生素、甜菜茄、粗纤维和矿物质等,果肉可生食,但不能过多食用。

    肥料资讯 2022年6月8日
    00
  • 栗子树 栗子树图片

    栗子树为什么不能在家里种 板栗是比较高大的乔木果树。 因为板栗是比较高大的乔木果树,株高达20米,树冠冠幅大。单叶互生,长10-22厘米,宽4.5-8厘米,叶缘锯齿状。在楼房内无法生长。如果是单独的院落,并且没有硬化的地面就可以栽种。 栗子树的生长环境: 板栗是比较高大的乔木果树,生长结果有两个主要特点:一是喜光性强;二是强枝结果。 板栗一般由结果母枝的先端…

    肥料资讯 2023年4月5日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信
自6.2开始主题新增页头通知功能,购买用户可免费升级到最新版体验