如何用液相色谱仪测氨基酸
反相高效液相色谱法测定烟叶中的游离氨基酸
氨基酸是烟草中的一类重要化学物质,在烟草调制、醇化或发酵、加工直至燃烧过程中,游离氨基酸与还原糖之间可发生酶催化及非酶催化的棕色化反应,生成多种具有蒸煮、烤香、爆米花香味特征的吡喃、吡嗪、吡咯、吡啶类等杂环化合物,某些氨基酸如苯丙氨酸还可自身分解成香味化合物,如苯甲醇、苯乙醇等。氨基酸含量与烟草制品的吃味有着密切的关系,氨基酸在燃烧裂解过程中一般形成具有刺激性的含氮化合物,对烟气香吃味产生不良影响,个别氨基酸还产生HCN等危害健康的烟气成分。一般说来,氨基酸含量太高,烟气辛辣、味苦、刺激性强烈;含量太低时烟气则平淡无味缺少丰满度。因此对氨基酸的分析是一项很有意义的工作,二十世纪60年代以来,国内外在这方面做了大量的工作[1-5]。
植物游离氨基酸样品的制备,国内外采用的提取剂和纯化方法各不相同。据文献报道[6-7],盐酸、不同浓度的乙醇溶液均可以用来提取植物组织中的游离氨基酸;提取液纯化则有用阳离子交换树脂、5%磺基水杨酸、活性炭或乙醚等方法。本实验对不同的提取方式和不同的纯化方法进行了对比研究,确定提取烟叶中游离氨基酸的较佳提取剂和纯化方法。提取、纯化后的样品,采用OPA、FMOC联合柱前衍生反相高效液相色谱法对烟叶中的游离氨基酸进行了测定。该方法使带氨基和亚氨基基团的氨基酸能够被同时测定,且得到较好的定性定量结果。
1 实验
1.1 仪器
Agilent公司HP1100型高效液相色谱仪(带可变波长紫外检测器和自动进样器),PE公司Lambda Bio40 紫外-可见分光光度计。
1.2 试剂
正缬氨酸(Norvaline,内标),OPA ,FMOC,均为色谱纯,Agilent公司提供;硼酸缓冲溶液,Agilent公司提供;
醋酸钠(NaAc),分析纯,中国医药(集团)上海化学试剂公司;三乙胺(TEA),四氢呋喃(THF),乙腈(CH3CN),甲醇(MeOH),均为色谱纯,Fisher公司试剂;
氨基酸标样包括:天冬氨酸(Asp)、谷氨酸(Glu)、天冬酰胺(Asn)、谷氨酰胺(Gln)、丝氨酸(Ser)、组氨酸(His)、甘氨酸(Gly)、苏氨酸(Thr)、丙氨酸(Ala)、精氨酸(Arg)、酪氨酸(Tyr)、胱氨酸(Cys)、缬氨酸(Val)、蛋氨酸(Met)、苯丙氨酸(Phe)、异亮氨酸(Ile)、亮氨酸(Leu)、脯氨酸(Pro),均为生化试剂,中国医药(集团)上海化学试剂公司;
苯乙烯阳离子交换树脂(732型),天津树脂厂。
1.3 样品处理
将烟叶在烘箱中恒温40℃烘干至恒重,粉碎,过80目筛,筛下物为实验用烟样粉末,置于广口瓶中备用。准确称取烟样粉末1.000g于干燥的洁净试管中,用一定浓度的乙醇溶液室温超声波提取半小时,过滤,相同浓度的乙醇溶液洗涤,再提取一次,合并后的滤液用阳离子交换柱洗脱,然后用95ml 4mol/L氨水淋洗阳离子交换柱,淋洗液恒温浓缩至干,最后用3ml 0.1mol/L稀盐酸溶液溶解浓缩物,将此溶液离心分离20min,0.45μm微孔滤膜过滤,加入浓度为5nmol/μ1的内标10μ1,定容至50ml,HP1100液相色谱仪进行氨基酸分析。
样品自动柱前衍生化:Agilent公司G1313A自动进样器进样。程序为:吸取5μl硼酸缓冲液,再吸取1μ1 OPA试剂,洗针一次,吸取样品2μl,原位混合6次。吸取1μl FMOC试剂,洗针一次,原位混合3次,进样。
1.4 色谱条件
色谱柱:Hypersil AA-ODS C18 2.1×200mm
流动相A:1.36±0.025g醋酸钠,加入500ml纯水溶解,加90μl三乙胺,用1%醋酸调pH=7.20±0.05,再加入1.5ml四氢呋喃,混合均匀。
流动相B:1.36±0.025g醋酸钠,加入100ml纯水溶解,用1%醋酸调pH=7.20±0.05,将此溶液加至200ml乙腈和200ml甲醇的混合物中,并混合均匀。
流速:0.45ml/min
柱温:40℃
紫外检测波长: 0~16min, 338nm; 16~25min,262nm
淋洗梯度:见表1
表1 流动相的淋洗梯度表
Table 1 The gradient time table of mobile phase
序列 时间(min) 流动相A(%) 流动相B(%) 流速(ml/min)
1 0.00 100.0 0.0 0.450
2 15.50 40.0 60.0 0.450
3 18.00 0.0 100.0 0.450
4 21.00 0.0 100.0 0.800
5 23.90 0.0 100.0 0.800
6 24.00 0.0 100.0 0.450
7 25.00 100.0 0.0 0.450
1.5 氮基酸的定性
用标样色谱图、文献参照和标样加入的方法,通过对照保留时间进行定性,对氨基酸的出峰顺序加以确认。
1.6 内标法定量
准确移取浓度为10 pmol/μ1、25 pmol/μ1、50 pmol/μ1、100 pmol/μ1、250 pmol/μ1、500 pmol/μ1、1000 pmol/μ1的氨基酸混合标样100μl于带内衬管的样品瓶中,再加入250pmol/μ1内标溶液100μl,充分混合,液相色谱分析,仪器自动计算各氨基酸的标准曲线。
2 结果与讨论
2.1 萃取溶剂的比较
氨基酸可溶解于水、乙醇、甲醇、稀酸等,因此它们均可作为烟叶中游离氨基酸的萃取溶剂,传统的方法是用乙醇和0.1mol/L的盐酸。实验发现,乙醇和0.1mol/L的盐酸萃取方法比较,提取出的烟叶中的游离氨基酸的总量变化不大,但用盐酸提取的样品分析时RSD%较大,平均8.51%,其中超过10%的有4个,甘氨酸的RSD%最大为20%;而用乙醇提取的样品分析时RSD%相对较小,平均5.12%,超过10%的只有1个。而且盐酸提取液过滤速度慢,需要30-40min,而乙醇提取液过滤只需10min左右;因此,本实验选择乙醇作为烟叶中游离氨基酸的萃取溶剂。
2.2 乙醇浓度的选择
选择五种不同浓度的乙醇溶液进行了烟样中游离氨基酸的提取,测定不同条件下提取液中游离氨基酸的总量,结果如图1。图中显示,在乙醇溶液浓度为80%时,烟样中总游离氨基酸的提取量最大。而且不同浓度下游离氨基酸的RSD%没有明显的变化,因此,选择80%的乙醇溶液来进行烟样中游离氨基酸的提取。
2.3 不同纯化方法的确定
在最佳乙醇溶液浓度下,分别用活性炭加入提取液吸附杂质、乙醚加入提取液萃取分离杂质、5%磺基水杨酸加入提取液沉淀去除杂质和阳离子交换树脂吸附杂质四种方法进行了纯化实验。结果发现,活性炭作为纯化剂时其色谱图中杂质峰较少,但同时氨基酸峰亦有多个消失,主要是因为活性炭对氨基酸也有较强的吸附,它在吸附杂质的同时也吸附了需要检测的氨基酸,故活性炭不适合作为纯化剂使用。乙醚和5%磺基水杨酸作为纯化剂时,杂质去除不完全,其色谱图均表现为杂质峰较多,湮没了大量氨基酸峰,且基线漂移严重,给定性定量工作带来困难。当用阳离子交换树脂进行纯化时,其色谱图中杂质峰较少,基线平稳,氨基酸峰分离较好,均可以进行定性和定量分析,故本实验选择了阳离子交换树脂作为纯化手段。
2.4 色谱分离
2.5 线性范围及标准曲线
分别取浓度为10 pmol/μ1、25 pmol/μ1、50 pmol/μ1、100 pmol/μ1、250 pmol/μ1、500 pmol/μ1、1000 pmol/μ1的氨基酸混合标样加入等体积的250 pmol/μ1的内标溶液,进行HPLC分析,以氨基酸浓度为横坐标,氨基酸与内标的面积比为纵坐标,得到各个氨基酸的标准曲线,如表2所示。从表中可以看出,各氨基酸在10-1000 pmol/μ1的浓度范围内均有良好的线性,各氨基酸标准曲线的线性相关系数均大于0.99。
表2 氨基酸的标准曲线
Table 2 Standard curves of 17 amino acids
氨基酸 线性方程 相关系数
Asp Y=0.007037x+0.004689 0.9972
Glu Y=0.007520x+0.005375 0.9961
Ser Y=0.006903x+0.038212 0.9988
His Y=0.003719x+0.020168 0.9945
Gly Y=0.005851x+0.018235 0.9966
Thr Y=0.006932x+0.021072 0.9978
Ala Y=0.006275x+0.015314 0.9912
Arg Y=0.006088x+0.016113 0.9920
Tyr Y=0.006734x+0.015022 0.9993
Cys Y=0.006004x+0.009876 0.9985
Val Y=0.006432x+0.009932 0.9927
Met Y=0.006574x+0.010346 0.9905
Phe Y=0.005098x+0.019023 0.9962
Ile Y=0.005976x+0.016235 0.9953
Leu Y=0.006044x+0.015332 0.9964
Lys Y=0.006833x+0.010437 0.9969
Pro Y=0.022455x+0.009376 0.9922
2.6 重现性实验
取云南C2F99烟样做平行实验(n=5),进行烟叶中游离氨基酸含量的检测,结果发现: Asp和 Glu含量的RSD%分别为8.0%和8.6%,这可能是二者的分离度不高引起的;His的RSD%为9.0%,这可能与其含量较低,分离效果不好有关。其它氨基酸含量的RSD%均处在3%~7%。
2.7 回收率实验
用标样加入法进行回收率实验,结果见表3。 Thr的回收率仅为68.0%,原因可能与其含量较少有关;其它15种氨基酸的回收率在81.0%~110.5%,平均回收率为93.9%,说明该方法的回收率结果令人满意。
表3 分析方法的回收率
Table 3 Recovery percents of the analytical method
氨基酸 加入量(mg/g烟样) 样品含量(mg/g烟样) 测定值(mg/g烟样) 差值(mg/g烟样) 回收率%
Asp 0.200 0.320 0.499 0.179 89.5
Glu 0.200 0.309 0.484 0.175 87.5
Asn 0.200 0.986 1.208 0.222 110.0
Ser 0.200 0.172 0.334 0.162 81.0
Gln 0.200 0.186 0.368 0.182 91.0
His 0.200 0.106 0.297 0.191 95.5
Gly 0.200 0.064 0.279 0.215 107.5
Thr 0.200 0.052 0.188 0.136 68.0
Ala 0.200 0.642 0.835 0.193 96.5
Arg 0.200 0.266 0.463 0.197 98.5
Val 0.200 0.090 0.259 0.169 84.5
Phe 0.200 0.218 0.406 0.188 94.0
Ile 0.200 0.026 0.191 0.165 82.5
Leu 0.200 0.028 0.199 0.171 85.5
Pro 0.200 1.432 1.653 0.221 110.5
Tyr 0.200 0.062 0.245 0.183 91.5
2.8 样品分析
利用该方法对不同等级的烟叶中游离氨基酸的含量进行了分析,结果见表4。从表中可以看出,在所分析的样品中,烤烟烟叶中含量最高的氨基酸是Pro,白肋烟烟叶中含量最高的氨基酸是Asp和Asn;白肋烟烟叶中氨基酸的含量高于烤烟烟叶;相同等级的烤烟烟叶,云南烟叶中的氨基酸含量高于其它产区。
表4 不同等级烟叶中游离氨基酸的含量(mg/g烟样)
Table 4 Amounts of free amino acids in different
grade tobacco leaves(mg/g tobacco leaves)
氨基酸 云南烤烟C1F 云南烤烟C2F 云南烤烟C1L 云南烤烟B1F 云南烤烟B2F 福建烤烟B1F 福建烤烟C1F 四川烤烟C1F 四川烤烟B1F 贵州烤烟C1F 贵州烤烟B1F 贵州烤烟C1L 鄂西白肋中一 鄂西白肋中二
Asp 0.24 0.31 0.60 0.40 0.38 0.37 0.26 0.37 0.26 0.26 0.32 0.35 1.73 1.59
Glu 0.36 0.32 0.21 0.17 0.16 0.11 0.15 0.20 0.30 0.32 0.29 0.25 0.54 0.61
Asn 0.91 0.34 1.50 0.95 0.38 0.18 0.25 0.35 0.32 0.44 0.55 0.48 7.70 7.62
Ser 0.16 0.10 0.18 0.16 0.10 0.12 0.24 0.21 0.19 0.20 0.19 0.15 0.62 0.58
Gln 0.19 0.05 0.22 0.17 0.04 0.06 0.10 0.11 0.10 0.11 0.15 0.10 0.18 0.20
His 0.11 0.02 0.14 0.10 0.06 0.06 0.11 0.09 0.07 0.09 0.08 0.09 0.20 0.22
Gly 0.10 0.09 0.19 0.17 0.07 0.08 0.12 0.15 0.12 0.15 0.13 0.12 0.16 0.19
Thr 0.05 0.05 0.08 0.06 0.05 0.04 0.08 0.09 0.08 0.07 0.06 0.05 0.19 0.16
Ala 0.65 0.55 0.84 0.69 0.54 0.51 0.65 0.59 0.55 0.48 0.53 0.70 0.57 0.55
Arg 0.29 0.21 0.32 0.28 0.18 0.26 0.32 0.28 0.25 0.33 0.29 0.33 0.48 0.42
Tyr 0.06 0.07 0.06 0.07 0.06 0.05 0.07 0.05 0.06 0.06 0.07 0.06 0.10 0.15
Val 0.10 0.10 0.12 0.11 0.10 0.14 0.15 0.13 0.12 0.15 0.14 0.13 0.21 0.25
Met 0.07 0.07 0.09 0.08 0.06 0.06 0.08 0.08 0.08 0.07 0.09 0.08 0.12 0.13
Phe 0.26 0.12 0.28 0.23 0.10 0.21 0.25 0.21 0.25 0.28 0.30 0.33 0.44 0.59
Pro 1.14 0.83 2.13 1.51 0.69 0.66 1.03 1.23 1.11 1.32 1.18 1.09 0.25 0.35
总量 4.69 3.23 6.96 5.15 2.97 2.91 3.86 4.14 3.86 4.33 4.37 4.31 13.49 13.61
3 结论
本烟叶中游离氨基酸的分析方法采用80%的乙醇作为萃取溶剂,阳离子交换树脂对提取液进行纯化,能够最大程度地提取烟叶中的游离氨基酸并较好地去除了影响氨基酸测定的杂质,使色谱图中杂质峰较少;OPA、FMOC联和柱前衍生使带氨基和亚氨基基团的氨基酸同时得到测定;良好的梯度洗脱使各个氨基酸峰得到较好的分离,并使定量结果更加可靠。
OPA衍生液什么颜色
OPA商品为固体粉末,溶液配制如下:10mgOPA粉末用0.1ml甲醇或乙醇溶解后加0.9ml 0.4N(pH 10.2)的硼酸缓冲液,然后加0.01ml的3-MPA(3-巯基丙酸),混合均匀后分装保存!
注:1、OPA一旦配制为溶液后就很不稳定,容易被氧化,因此衍生过程中如有可能,通N2保护。
2、OPA氨基酸衍生化中,3-MPA是必须的。
3、硼酸溶液用10N的NaOH调节pH值。
4、衍生化反应在硼酸缓冲液体系中进行(样品和硼酸溶液体积比为1:5),OPA的摩尔量控制为AA总量的5倍以上
5、颜色为无色或为淡黄色
食品营养成分分析
食品营养成分的分析
食品营养成分:就是指食品中对人体具有营养学意义的成分。
主要有蛋白质、脂肪、碳水化合物、维生素、矿物质(也称为无机盐)和水。其中,蛋白质、脂肪和碳水化合物被称为三大营养素。它们都是动植物食品中的主要组成成分,能供给机体能量。无机盐和维生素则不能给人类提供热量,但它们是人体多种酶和生理活性物质的重要组成部分。水则是维持人体生存的重要物质。
食品营养成分的摄入是否合理直接关系着人体的健康,但是没有一种天然的食物能供给人体所需的全部营养素。因此,对食品进行营养成分分析,掌握食品中营养素的质和量,指导人们合理营养与膳食,对食品的生产、加工、运输、贮藏、销售过程进行营养成分的检测,及时了解食品品质的变化,以及为食品新资源和新产品的研发提供可靠的依据。
第一节 食品中水分的测定
水分是食品的天然成分,也是动植物体内不可缺少的重要成分,具有及其重要的生理作用。如水是体内营养素及其代谢产物的良好溶剂,是体内各种化学反应的介质,能帮助营养素的吸收和代谢产物的运输、排泄,同时在调节体温、润滑关节和肌肉、减少摩擦等方面都发挥了重要的作用。
医疗器械常用的灭菌方式有哪些?
(1)加热灭菌法
利用高温来杀死微生物(超过最高生长温度)的方法。加热灭菌的原理:当高温作用于微生物时,首先引起细胞内生理生化反应速率加快,机体内对温度敏感的物质如蛋白质、核酸等,随着温度的增高而遭受不可逆的破坏,尽而导致细胞内原生质体的变化、酶结构的破坏,从而使细胞失去了生活机能上的协调,停止了生长发育。随着高温的继续作用,细胞内原生质便发生凝固,酶结构完全破坏,活动消失,生化反应停止,渗透交换等新陈代谢活动消失,细胞死亡。加热灭菌可分干热灭菌和湿热灭菌两大类。
1)干热灭菌 利用灼烧或干热空气灭菌而没有饱和水蒸气参加的灭菌法称为干热灭菌法。由于干热灭菌使用方便,方法简单,故在生产上广泛应用。如火焰灭菌法:直接利用火焰把微生物烧死,故又称焚烧灭菌法。采用此法灭菌既彻底又迅速,但只适用于金属制的接种工具、试管口及污染物品等的处理。热空气灭菌法:即在电热恒温干燥箱中利用干热空气来灭菌。
2)湿热灭菌 即利用蒸汽进行灭菌的方法。湿热灭菌又分为高压、常压、间歇灭菌和巴氏灭菌4种。
①高压蒸汽灭菌 由于高压蒸汽具有较强的穿透力和较常压高的温度,能大大缩短灭菌时间,提高工作效率,加之蛋白质在湿热条件下容易变性,在热蒸汽条件下,细菌的芽孢在120℃,经20~30分钟可全部被杀死。如灭菌材料体积较大,不易被穿透时,可将压力增加到0.152兆帕,延长至1~2小时。在高压蒸汽灭菌中,灭菌温度随蒸汽压力的增加而升高(图2-6)。
图2-6 高压蒸汽灭菌锅
在使用高压灭菌锅时,要完全排出锅内的空气而以饱和蒸汽代之。如果空气不排除干净,则锅内温度将低于同样压力下由纯饱和蒸汽产生的温度,影响灭菌效果。
此法适用于各种耐热物品的灭菌,如一般培养基、生理盐水等各种溶液、玻璃器皿、工作服等。所采用的蒸汽压力与时间,应根据待灭菌物品的性质、体积与容器类型等决定。
②常压蒸汽灭菌 这是采用自然压力、100℃蒸汽进行灭菌的方法。它设备简单、成本低,当前使用最广泛。只要砌一个炉灶,买1~2只大锅,上面用砖和水泥砌成,也可用大铁桶、木桶等,体积大小可自行决定,但不宜过大,以装800~1500瓶为好。设计常压灶时应注意的问题:大小根据生产规模来定,灶顶部最好制成拱圆形,这样冷凝水可沿灶的内壁下流而不会打湿棉塞;灶仓内要有层架结构,以便分层装入灭菌物;灶上应安装温度计,可随时观察灶内温度的变化;因灭菌时间长,锅内水不够蒸发,故容量大的灶要安装加水装置;灶仓的密闭程度要尽可能高,这样既提高灭菌效果,又节省燃料。菇农在生产中还常用一种小型蒸汽发生装置,引出蒸汽后直接通到下边用木条堑起、四周用多层塑料布密封的菌袋堆中进行常压灭菌。这种方法不用建灶,简便省工(图2-7)。常压灭菌一般水烧开后保持8~10小时,闷一夜即可。
图2-7 简易常压灭菌法
③常压间歇蒸汽灭菌法 这是利用常压蒸汽反复几次灭菌的方法。具体做法是将待灭菌物品放在锅内,100℃处理1小时左右,杀死微生物的营养细胞,让其冷却至30℃左右,此时芽胞会萌发,再以同样方法加热处理,反复3次,可达到灭菌目的。该方法可用于不耐高温的药品、营养物、特殊培养基的灭菌。
④低温巴氏灭菌法 即在60~70℃下,经一定时间,杀死有害微生物的方法。适应于不耐高温的物品消毒。有些培养基,在高温下遭到破坏,用此法既可杀死致病微生物的营养体,又能使培养基的成分不致受到严重破坏。食用菌生产中培养料堆积发酵工艺,就是利用这个原理杀死其中的病虫、杂菌。
(2)过滤除菌法
又分液体过滤和空气过滤两种,就是采用机械的方法,设计一种滤孔比细菌还小的筛子,做成各种过滤器,通过机械过滤,只让液体培养基或空气从筛孔流出,各种微生物菌体则留在筛子上,从而达到除菌的目的。这种方法适用于对热不稳定的体积小的液体培养基(如动物血清、蛋白质、酶、维生素等)及气体的灭菌。超净工作台的工作原理就是将带菌空气通过过滤灭菌形成无菌空气,从风洞中吹出,来造成工作台范围的无菌状态。过滤灭菌的最大优点是不破坏培养基中各种物质的化学成分。常用的过滤器有用硅藻土制的、石棉制的、陶瓷土制的,也有用火棉胶、硝化纤维素滤膜制成的。
(3)辐射灭菌法
利用辐射产生的能量进行杀菌的方法称辐射灭菌。辐射可分电离辐射和非电离辐射两种,α-射线、β-射线、γ-射线、X-射线、中子和质子、微波等属电离辐射,紫外线、臭氧、日光为非电离辐射。
1)紫外线灭菌 紫外线杀菌的原理是利用紫外线的辐射作用。用灯管直接照射细菌使其发生光化学反应,将细菌细胞质诱导形成胸腺嘧啶双聚体,从而抑制DNA的复制而发生变性、致死。另一方面,空气在紫外线照射下产生的臭氧(O3),也具有一定的杀菌作用。紫外线的有效作用距离为1.2~2.0米。紫外灯一般悬吊在接种室或培养室的上方,个数依房间大小而定,容1~2个人操作的接种室,安装一个30瓦的紫外灯就可以了。在每次接种前,应将所需的器具一起放入接种室(箱)内,然后打开紫外灯照射。如果接种室体积较大,开灯照射2小时才能达到灭菌效果;如果较小,只需开灯半小时左右既可达到灭菌效果。由于紫外线穿透力弱,即使是普通玻璃也不能滤过,因此,只适于空气或物体表面的灭菌。紫外线对人体皮肤,尤其是眼睛有杀伤作用,应避免直视,工作时应将紫外灯关闭。紫外线消毒时工作场所如果处在稍暗无光的情况下,能提高杀菌效果。细菌接受致死量紫外线照射后,随即给予可见光照射,部分细菌有复活的可能。干细胞比湿细胞对紫外线的抗性强,孢子比其营养细胞对紫外线更具抗性。
2)微波灭菌 由于微生物的细胞中都含有70%~90%的水分,水分子在微波电场中被极化,并随着电场方向的改变而转动,在转动过程中分子之间高速度摩擦产生热能,这种热能不同于外部加热,可在短时间里使细胞爆破而物体本身的温度却只有极微增加,从而达到灭菌效果。用YM7601型微波炉只需60秒钟就能杀死食品中192万个大肠杆菌。
3)臭氧发生器消毒 臭氧(O3)具有强烈的氧化作用,能破坏微生物的细胞膜与核酸。O3也是一种暂态物质,常温下能自然分解,还原成氧。其灭菌原理实际上和紫外线消毒极相似。
OPA是什么化学名称
邻苯二甲醛(O Phthalic Aldehyde) ,邻苯二甲醛分子式为C8H602,淡黄色结晶,对光和空气敏感,能随水蒸气挥发。溶于水、乙醇、乙醚和有机溶剂,微溶于石油醚。有刺激性。主要用于1、化学领域分析试剂:作为胺类生物碱试剂,用于荧光法测定伯胺和肽键分解物。 2、有机合成:也是医药中间体 3、荧光试剂,用于柱前HPLC分离氨基酸衍生物,流式细胞测量蛋白质的硫醇基团
很高兴为您解答有用请采纳
氨基酸OPA衍生必须是碱性环境吗
氨基酸与OPA衍生反应机理
氨基酸均为伯胺,可以对邻苯二甲醛的醛基进行亲核加成生成醇胺,然后脱水生成席夫碱。在碱性
(PH=9.5)和强还原剂(如硫基乙醇)存在的条件下进一步反应生成氨基酸衍生物,在338nm处可检
测出峰。
主题测试文章,只做测试使用。发布者:氨基酸肥料,转转请注明出处:https://www.028aohe.com/29250.html