智慧杀虫灯 智能杀虫

太阳堡是什么啊?

太阳堡,一种磁光仿生理疗房,是家用的养生理疗中心,中国科学院智能机械研究所经过对世界长寿之乡——巴马的长期研究,研发出的高科技产品。太阳堡磁光仿生理疗房,模拟了巴马早晨8、9点钟的阳光、空气、地磁场,具有振荡排毒垢,光波驱体寒的绝佳效果。

太阳堡采用了仿生地磁场的环境,全方位地以电磁振荡作用于人体,加强细胞电压差,各组织器官产生极其细微振动,细胞内外的矿物质离子按正常数值重新分配,从而降低血液粘稠度,改善血管张力,促进细胞活性,消减自由基,调节内分泌,将内脏深层毒素先排至血液中。体验30分钟,你会明显感到皮肤毛孔打开,热能从身体内部向外部游动,全身轻松。

太阳堡世界首次制造9.6微米的定频远红外线,将人体内的水分子切割共振,使其变成可自由穿透细胞的小分子水,并散发热能,改善微循环,促进新陈代谢。血液中毒素通过汗液、尿液排出体外,人体免疫力大大增强。体验40分钟,大汗珠变小汗珠,身体异味不断排除,全身充满活力。

智慧杀虫灯 智能杀虫

如何选择智慧物联网杀虫灯?

近年来,太阳能杀虫灯逐渐受到了很多农民朋友的欢迎。而随着科技的创新,太阳能杀虫灯的升级版-智慧物联网杀虫灯应用而生。那如何选择一款合适的物联网杀虫灯呢?首先要能够让使用者可以在收集或者PC端就能够及时对杀虫时间、关闭时间 等进行设置;其次能够及时观测杀虫灯的工作状态。福建蜂窝物联网科技有限公司自主研发的智慧物联网杀虫灯能够实现远程监控能够更方便、更快捷,减少劳累奔波造成的时间浪费,科学设置时间更能提高作物生长的环境状态。

云飞科技智慧物联网杀虫灯无需市电是什么意思?

云飞科技的智慧物联网杀虫灯不需要扯线拉网架电,不需要使用交流电。它是利用太阳能板储存电量,白天贮存太阳能发的电,晚上利用储存的电来进行杀虫。

专题推荐 – 农业传感器与物联网专题

本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。

文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。

专题–农业传感器与物联网

Topic–Agricultural Sensor and Internet of Things

[1]王培龙, 唐智勇. 农产品质量安全纳米传感应用研究分析与展望[J]. 智慧农业(中英文), 2020, 2(2): 1-10.

WANG Peilong , TANG Zhiyong. Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J]. Smart Agriculture, 2020, 2(2): 1-10.

知网阅读

[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成. 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J]. 智慧农业(中英文), 2020, 2(2): 11-27.

YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng. Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J]. Smart Agriculture, 2020, 2(2): 11-27.

摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

知网阅读

[3]汪进鸿, 韩宇星. 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J]. 智慧农业(中英文), 2020, 2(2): 28-47.

WANG Jinhong, HAN Yuxing. Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J]. Smart Agriculture, 2020, 2(2): 28-47.

摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

知网阅读

[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚. 基于荧光法的溶解氧传感器研制及试验[J]. 智慧农业(中英文), 2020, 2(2): 48-58.

GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya. A fluorescence based dissolved oxygen sensor[J]. Smart Agriculture, 2020, 2(2): 48-58.

摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。

知网阅读

[5]矫雷子, 董大明, 赵贤德, 田宏武. 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J]. 智慧农业(中英文), 2020, 2(2): 59-66.

JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu. Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J]. Smart Agriculture, 2020, 2(2): 59-66.

摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、操作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到0.97。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到0.9,结果表明该方法具有土壤养分现场快速检测的能力。

知网阅读

[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇. 农机远程智能管理平台研发及其应用[J]. 智慧农业(中英文), 2020, 2(2): 67-81.

ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong. Development and application of an intelligent remote management platform for agricultural machinery[J]. Smart Agriculture, 2020, 2(2): 67-81.

摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

知网阅读

[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳. 水肥浓度智能感知与精准配比系统研制与试验[J]. 智慧农业(中英文), 2020, 2(2): 82-93.

JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan. Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J]. Smart Agriculture, 2020, 2(2): 82-93.

摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0.999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了0.1。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

知网阅读

[8]孙浩然, 孙琳, 毕春光, 于合龙. 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J]. 智慧农业(中英文), 2020, 2(3): 98-107.

SUN Haoran, SUN Lin, BI Chunguang, YU Helong. Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J]. Smart Agriculture, 2020, 2(3): 98-107.

摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了0.04 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。

知网阅读

[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰. 面向果园多机器人通信的AODV路由协议改进设计与测试[J]. 智慧农业(中英文), 2021, 3(1): 96-108.

MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie. Improved AODV routing protocol for multi-robot communication in orchard[J]. Smart Agriculture, 2021, 3(1): 96-108.

摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了3.65%和7.09%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了0.59%,平均端到端时延降低了13.09%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为21.01%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。

知网阅读

[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤. 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J]. 智慧农业(中英文), 2021, 3(1): 129-143.

HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin. Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J]. Smart Agriculture, 2021, 3(1): 129-143.

摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。

知网阅读

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法: 加我微信 331760296 , 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广

智慧农业通过实验室改良的种植技术与传统种植有什么区别?

你好,国家规划2022年之前,要建10亿亩高标准农田,也可以理解为智慧农业!就是在传统农田中通过应用现代化的设备,实现低成本、高效率的种植!

如何实现低成本?高效率呢?举两个简单的例子

比如虫害防治,传统对于虫害的防治主要就是依靠农药,智慧农业对于虫害方式将不再依赖农药,通过在田间安放测报灯和太阳能杀虫灯,测报灯监测到害虫后,会反馈给后台系统,系统收到消息,就能自动打开杀虫灯,开启物理杀虫模式。

再比如灌溉施肥:系统通过土壤湿度传感器,实时监测土壤水分,根据土壤水分控制灌溉设备,通过土壤氮磷钾控制施肥设备。

无论是灌溉还是施肥,整个过程都是自动化控制的。这样就节省了人力,减少了种植的成本,提高了种植的效率。

什么是智慧农业

智慧农业的意思:

智慧农业是指以农业信息技术应用为核心,通过信息技术改造传统农业,全面推进“互联网+”与农业生产、经营、管理、服务融合发展,推动生产智能化和营销网络化上新水平,促进管理高效化和服务便捷化实现新提升,为加快农业现代化和农村一二三产业融合提供新动力。

智慧农业是地理信息系统、全球卫星定位系统、遥感技术、自动化技术、计算机技术、通信与网络技术等数字技术与农业生产学科、农业环境学科、农业农业等基础专业的综合应用。涉及农业的管理学科。农业生产、经营、经营、流通、服务等领域在数字化层面的学科知识。

数字化设计、可视化表达、智能控制和系统化管理有机结合,实现农业资源的合理利用,降低生产成本, 提高经营效率,改善生态环境等目的,使农业按照人类的需要发展。

随着全球人口增长、气候变化和粮食短缺等均是世界上最具挑战性的问题。联合国粮食及农业组织(FAO)表示,到2050年,作物产量提高约50%,才能养活全世界的人口。

智慧农业可以讯速、动态地做出反应,收集出来的数据使农民最大限度地提高作物产量。

农业革命的各个阶段都围绕着可持续性、粮食生产、能源和农业技术发展等主题。

智慧农业的数字技术可以让农民更好地获悉农田和农作物的状况。妥善利用这些收集的数据可大幅提高作物产量和效率。着重于各种农业工具和传感器技术之间的交互,可使农业实践获得显著进展。

主题测试文章,只做测试使用。发布者:氨基酸肥料,转转请注明出处:https://www.028aohe.com/107097.html

(0)
氨基酸肥料氨基酸肥料
上一篇 2023年4月7日 下午10:35
下一篇 2023年4月7日 下午10:36

相关推荐

  • 豌豆尖种植方法,附种植管理

      选种:选种时以种皮厚、颗粒圆大、表面光滑、纯净度和发芽率高的种子为好,种植产量高。   整地:在排灌方便、土质肥沃的地块种植豌豆尖,播前整地,亩施农家肥3000-5000千克、硫基复合肥20千克作为底肥。   晒种:播种前晒种1-2天。   播种:播种时间为10月上中旬,条播行距30厘米,亩用种子15千克,播后覆土、浇水。出苗前不浇水,苗高18-20厘米…

    肥料资讯 2023年4月16日
    00
  • 荔枝是什么意思(励志是什么意思)

    荔枝为什么叫荔枝?有什么含义? 最早关于荔枝的文献是西汉司马相如的《上林赋》,文中写作“离支”,割去枝丫之意。大约东汉开始,“离支”写成“荔枝”。 原来,古人已认识到,这种水果不能离开枝叶,假如连枝割下,保鲜期会加长。大约东汉开始,“离支”写成“荔枝”。 荔枝分布于中国的西南部、南部和东南部,广东和福建南部栽培最盛。亚洲东南部也有栽培,非洲、美洲和大洋洲有引…

    肥料资讯 2023年1月30日
    00
  • 白芨苗 白芨一亩需多少种苗

    白芨的种植方法主要有? 种植白芨一般选择3月份左右进行,尽量选择疏松肥厚的沙质土壤或者腐质土壤。繁殖方法:一般通过块茎繁殖。栽种方法:种植前要进行开沟,距离保持20cm左右,深度保证为5cm左右,块茎需将芽朝上放置,然后填土。田间管理:在它生长期间需要定期做好除草、保持土壤湿润、松土、施肥、追肥等等相关工作。 1、选地整地 白芨在种植之前首先要选择好土地,它…

    肥料资讯 2023年4月4日
    00
  • 今日铁价废铁价6(废铁今天价)

    废品回收废铁多少钱一斤? 不同地区网有危废报价不同: 9月20日湖北:精一级重废2980,精二级重废2930,精三-级重废2880,一级重废12厚2940,二级8厚2890,三-级重废2840,机械生铁2840,钢筋切头3000,破碎料破碎剪料一级冲子二级冲子停收,钢筋2720,锻打料2720,不含税。 9月20日四川:特级料:2870;重废:2810;中废…

    肥料资讯 2022年9月22日
    00
  • 丙溴磷(丙溴磷的作用与功效)

    丙溴磷杀什么虫? 丙溴磷对卵、幼虫和成虫均有效,并可穿透叶片表层而杀死叶背面的害虫。混剂兼有两单剂的优点,而且可延缓害虫产生耐药性。不对称有机磷杀虫剂。具触杀和胃毒作用,无内吸作用,杀虫谱广,能防治棉花、蔬菜地有害昆虫和螨类。丙溴磷为浅黄色液体,具蒜味,沸点100℃/1.80Pa,蒸气压1.24×10-4Pa(25℃)密度1.455(20℃),KowlogP…

    肥料资讯 2022年12月29日
    00

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信
自6.2开始主题新增页头通知功能,购买用户可免费升级到最新版体验