保守氨基酸序列
生物学家劳伦斯·赫斯特和斯蒂芬·弗里兰在20世纪90年代末把天然基因密码和计算机随机产生的几百万组密码拿去比对,结果轰动一时。他们想知道,如果发生点突变这种把一个字母换掉的变异,哪一套密码系统能保留最多正确的氨基酸,或将它代换成另一个性质相似的氨基酸。
结果他们发现,天然的基因密码最经得起突变的考验。点突变常常不会影响氨基酸序列,而如果突变真的改变了氨基酸,也会由另一个物理特性相似的氨基酸来取代。据此,赫斯特与弗里兰宣称,天然的遗传密码比成千上万套随机产生的密码要优良得多。它不但不是大自然密码学家愚蠢而盲目的作品,而是万里挑一的密码系统。
天然的三联基因密码的第一个字母都有特定的对应方式。举例来说,所有以丙酮酸为前体合成的氨基酸,它们密码的第一个字母都是T。所有由α-酮戊二酸所合成的氨基酸,其三联密码第一个字母都是C;所有由草酰乙酸合成的氨基酸,第一个字母都是A;最后,几种简单前体通过单一步骤所合成的氨基酸,第一个字母都是G。
三联密码的第二个字母和氨基酸是否容易溶于水有关,或者说和氨基酸的疏水性有关。亲水性氨基酸会溶于水,疏水性氨基酸不会溶于水,但会溶在脂肪或油里,比如溶在含有脂质的细胞膜里。所有的氨基酸,可以从“非常疏水”到“非常亲水”排列成一张图谱,而正是这张图谱决定了氨基酸与第二个密码字母之间的关系。疏水性最强的六个氨基酸里有五个,第二个字母都是T,所有亲水性最强的氨基酸第二个字母都是A。介于中间的有些是G有些是C。
三联密码的第三个字母不含任何信息,不管接上哪一个字母都没关系,这组密码子都会翻译出一样的氨基酸。以甘氨酸为例,它的密码子是GGG,但是最后一个G可以代换成T、A或C。
第三个字母的随机性暗示了一些有趣的事情。二联密码可以编码16种氨基酸。如果我们从20个氨基酸里拿掉5个结构最复杂的(剩下15个氨基酸,再加上一个终止密码子)这样前两个字母与这15个氨基酸特性之间的关联就更明显了。因此,最原始的密码可能只是二联密码,后来才靠“密码子捕捉”的方式成为三联密码,也就是各氨基酸彼此竞争第三个字母。
第一个字母和氨基酸前体之间的关系直截了当,第二个字母和氨基酸的疏水性相关,第三个字母可以随机选择。这套密码系统除了可以忍受突变,还可以降低灾难发生时造成的损失,同时可以加快进化的脚步。因为如果突变不是灾难性的,那应该会带来更多的好处。
君实生物新冠抗体三期临床
澎湃新闻记者 李潇潇
君实生物在新冠治疗药物领域再有新动作。
1月26日,君实生物(1877.HK,688180.SH)宣布,与苏州旺山旺水生物医药有限公司(简称“旺山旺水”)达成合作,共同承担靶向3CL蛋白酶的可口服抗新冠病毒候选新药VV993在全球除乌兹别克斯坦、吉尔吉斯斯坦、哈萨克斯坦、土库曼斯坦、塔吉克斯坦(中亚五国)外的国家或地区范围内的研究、生产及商业化工作。
在新冠治疗药物方面,君实生物此前在研管线已经有3款新冠治疗药物,其中两款中和抗体药JS016、JS026,一款口服小分子药VV116。这意味着,VV993成为君实生物第四款在研新冠治疗药。
VV993由中国科学院上海药物研究所(上海药物所)和中国科学院****研究所(****所)共同研发,属于3CL蛋白酶抑制剂。
3CL蛋白酶(3C-likeprotease,3CLpro)是新冠病毒复制过程中不可或缺的蛋白水解酶,其氨基酸序列在目前已出现的多个新冠病毒变异株中几乎没有变化,属于高度保守的抗新冠病毒药物研发的重要靶标。目前全球进展最快的3CL蛋白酶抑制剂是辉瑞,其口服抗病毒候选药物Paxlovid已在美国获紧急使用授权。
据君实生物介绍,在新冠病毒感染的细胞模型实验中,VV993可以有效抑制新冠病毒复制。在新冠病毒感染的小鼠模型中,VV993不仅可以有效降低病毒复制,还能显著改善由新冠病毒感染造成的肺部病理改变。其它成药性方面,VV993安全性较好,目前没有发现心脏毒性和神经毒性作用。
君实生物称,目前研究结果显示,VV993是安全、可口服、动物模型上有效的抗新冠病毒候选化合物,具有重要的开发价值。
这是君实生物与旺山旺水就新冠治疗药物达成的第二项合作。2021年10月初,君实生物宣布,与旺山旺水合作开发口服核苷类抗新冠病毒药物VV116,双方将共同承担VV116在全球范围内的临床开发和产业化工作。
目前,VV116正在开展全球多中心临床研究,其中3项在中国开展的I期研究已于近日完成,初步结果显示临床安全性良好,针对轻中度COVID-19患者的国际多中心II/III期临床试验正在进行中。
对于多个在研药同时推进的意义,君实生物强调,VV116和VV993是针对病毒生命周期的不同关键且保守靶点而开发的药物或候选药物,除了可以单独使用发挥各自的临床优势或特点,还具有“联合用药抗病毒,相得益彰好效果”的发展前景。
君实生物CEO李宁此前在接受澎湃新闻记者采访时也表示,针对感染类疾病的药物研发,通常会考虑药物的覆盖广度以及药物的疗效与安全性等几个方面。根据经验,一款药物无法做到面面俱到,随着对于疾病的了解以及治疗手段的开发越来越深入,疗法的选择可能会经历渐进式的替代,也可能会形成一套互相补充的“组合拳”。
截至1月26日收盘,君实生物A股报63元/股,跌10.26%,市值573.8亿元。港股报47.75港元/股,跌5.07%,市值434.9亿元。
责任编辑:是冬冬 图片编辑:胡梦埼
校对:丁晓
君实生物开发新冠口服药VV993,系其第四款在研新冠治疗药,君实生物新冠抗体三期临床
四种DNA字母要编码20种氨基酸。绝不可能是一对一编码,也不可能是二对一编码,因为两个字母最多只能组成16种组合(4×4)。因此,最低要求是三个字母,也就是DNA序列里面最少要有三个字母对应到一个氨基酸,被称为三联密码,后来被克里克和西德尼·布伦纳证实。
但是这样看起来似乎很浪费,因为用四种字母组成三联密码,总共可以有64种组合(4×4×4),这样应该可以编码64个不同的氨基酸,那为什么只有20种氨基酸呢?一定有一个神奇的答案来解释为什么4种字母,3个一组,拼成64个单词,然后编码20种氨基酸。
1952年,沃森就曾写信告诉克里克:“DNA合成信使RNA(mRNA), mRNA合成蛋白质。”克里克开始研究这一小段mRNA的字母序列,如何翻译成蛋白质里面的氨基酸序列。他认为mRNA可能需要一系列“适配器”来帮助完成翻译,每一个适配器都负责携带一个氨基酸。当然每一个适配器一定也是RNA,而且都带有一段“反密码子”序列,这样才能和mRNA序列上的密码子配对。
适配器分子也由RNA分子组成。它们现在叫作“转运RNA”或tRNA。现在整个工程变得有点像乐高积木,一块块积木接上来又掉下去,一切顺利的话,它们就会这样一个接一个地搭成精彩万分的聚合物。
随着实验技术进步而且越来越精密,在20世纪60年代中期许多实验室陆续解开了序列密码。然而经过一连串不懈的译码工作后,大自然却好像随兴地给了个潦草结尾,让人既困惑又扫兴。遗传密码子的安排一点也不具创意,只不过“简并”了(意思就是说,冗余)。有三种氨基酸可对应六组密码子,其他的则各对应一到两组密码子。每组密码子都有意义,还有三组的意思是“在此停止”,剩下的每一组都对应一个氨基酸。这看起来既没规则也不美,根本就是“美是科学真理的指南”这句话的最佳反证。甚至,我们也找不出任何结构上的原因来解释密码排列,不同的氨基酸与其对应的密码之间似乎并没有任何物理或化学的关联。
克里克称这套让人失望的密码系统为“冻结的偶然”,而大部分人也只能点头同意。他说这个结果是冻结的,因为任何解冻(试图去改变密码对应的氨基酸)都会造成严重的后果。一个点突变也许只会改变几个氨基酸,而改变密码系统本身却会从上到下造成天大灾难。就好似前者只是一本书里无心的笔误,并不会改变整本书的意义,然而后者却将全部的字母转换成毫无意义的乱码。克里克说,密码一旦被刻印在石板上,任何想改动它的企图都会被处以死刑。这个观点至今仍有许多生物学家认同。
主题测试文章,只做测试使用。发布者:氨基酸肥料,转转请注明出处:https://www.028aohe.com/24262.html