氨基酸分子正电吗
柑橘缺钙的原因及解决方案
问题一:柑橘缺钙的原因
一、钙在木质部的运输依赖蒸腾作用的大小
影响蒸腾作用的因素
1、光照
光照有利于促进植物光合作用,打开气孔,提高叶温,增强蒸腾速率。
2、温度
当气温相对较低时(叶温大于气温2-10℃),蒸腾速率增大;
当气温相对过高时,叶片过度失水卷曲,气孔关闭,蒸腾作用减小。
3、湿度
空气湿度越大,蒸腾作用越小;反之,蒸腾速率增强。
4、风速
风能将叶面气孔外的水蒸气扩散层吹散,降低空气湿度,有利于蒸腾作用;强风则可能会引起叶面气孔关闭,蒸腾作用减弱。
以上综述:高温多雨天气,不利于植物根系对钙的吸收及向地上部分运输。 植物不同部位、器官的蒸腾作用强度不同; 老叶蒸腾作用较强,因此常有钙富集; 植株顶芽、侧芽、根尖等分生组织的蒸腾作用很弱,供应的钙很少; 肉质果实的蒸腾量一般都比较小,因此极易发生缺钙现象。
二、钙在土壤中容易被固定
钙在土壤中必须是游离态(溶液),才能通过根系被植物所吸收。但钙以游离态施入土壤中,极易被CO32-、PO43-、SO42-等基团所固定,生成难溶于水的碳酸钙、磷酸钙、硫酸钙等物质。
三、钙在植物体内的移动性较低
钙在韧皮部的运输能力很小,老叶中富集的钙难以运输到幼叶、根尖等新生长点中去,致使这些部位首先缺钙。
四、钙与其他金属元素存在拮抗作用
钙与磷拮抗: 在碱性土壤条件下,钙容易被磷所固定,生成难溶的磷酸钙,降低了钙离子的移动性导致拮抗。
钙与钾拮抗: 物质在细胞跨膜运输中,钾施用过量造成细胞膜内外钾、钠离子交换较多,钙、钠离子交换减少,抑制细胞对钙的吸收。
钙与镁拮抗: 钙、镁离子具有相同的电荷和较为接近的半径,在根系离子通道的结合位点上可以在一定程度上相互取代。
钙与铵拮抗: 在酸性土壤条件下,铵根离子使根尖细胞中的氨基酸带正电荷,趋向吸收带负电荷的阴离子,导致钙、镁等金属阳离子吸收受阻。
问题二:如何合理施用钙肥 一、以叶面喷施为主 由于钙离子在土壤中极易被固定,因此叶面补充较为高效。 植物叶片表面通常附有角质层,由脂肪酸构成,本质带负电荷。
叶面喷施时,带正电荷的金属离子容易被角质层吸附,起屏障阻隔作用,阻碍金属离子的吸收。
利用相似相融的原理,氨基酸螯合物能透过角质层被植物所吸收。
推荐方案:选择氨基酸钙或糖醇钙等螯合钙肥
?购买链接:植美佳-糖醇钙硼型 叶面喷施肥 补硼补钙 防缺素 包邮
二、不同土壤环境不同施肥策略 针对酸性土壤:先适当增施石灰或土壤调理剂以后,再施用钙肥,比单独增施钙肥的效果更好; 针对碱性土壤:增施有机肥比增施钙肥的效果更好,因为有机肥既有利于增加钙的水溶性也能够提高土壤颗粒对钙离子的吸附性而减少钙离子的淋失。
三、注意肥料混配,避免拮抗作用 土壤施肥时,含磷酸根磷肥(如钙镁磷肥、磷酸氢钙、磷矿粉等)不宜和钙肥同时直接混合施用。
叶面喷施时,避免与高磷高钾叶面肥混用。
文章来源:小桔灯作物科技
?柑橘补钙,推荐使用植美佳-糖醇钙 硼型叶面肥: 小分子有机酸糖醇钙硼,防治性强,调节力高,能快速吸收而不囤积,快速补充钙硼元素,有效预防缺素症,提高作物防病抗病机能,增强肥效,改善作物品质,预防裂果、畸形果,增产优质,效果显著。
使用方法:
喷施:亩用量约100g兑水约60公斤进行叶面喷施于正反叶面(稀释倍数为1000倍),建议每7-10天左右喷施一次,整个生长周期建议施用3~5次。
本成分稳定,作物发生病虫害时,可与酸性农药混喷(强碱性农药除外)。
根据作物生长周期,勤施薄施,效果更佳。
购买链接:植美佳-糖醇钙硼型 叶面喷施肥 补硼补钙 防缺素 包邮
转铁蛋白靶向性
来源:【中国科学院】
铁蛋白是存在于人体细胞中的储铁蛋白,具有独特的壳-核结构,外壳由24个亚基自组装形成蛋白笼,内腔能以水铁矿形式储存铁。2012年,中国科学院院士、中科院生物物理研究所研究员阎锡蕴团队发现人重链铁蛋白(Human heavy chain ferritin,HFn)识别肿瘤标志分子——转铁蛋白受体1(TfR1/CD71),随后,又发现铁蛋白笼上存在温度可控的小分子药物通道。这些重要发现赋予铁蛋白作为肿瘤靶向药物载体的优良性能,包括对小分子药物的高效装载能力和针对肿瘤相关疾病的靶向治疗能力。
然而,基于铁蛋白作为核酸载体的开发却囿于其蛋白结构的天然负电性,这使得同样带负电的核酸药物难以装载其中。为此,研究人员基于对铁蛋白结构的分析,选择性对铁蛋白内表面负电氨基酸进行正电突变,构建了内腔正电的载核酸铁蛋白载体。该新型铁蛋白载体实现了对Toll样受体核酸配体的有效装载,并且有效增强了抗肿瘤免疫治疗。相关研究成果于近日在线发表在Nano Today 上。
近年来,核酸药物凭借着治疗靶点明确、持久高效等特点,在肿瘤治疗中凸显出传统药物不可取代的优越性。免疫治疗是继手术、放疗、化疗等传统方法后快速发展的新一代肿瘤疗法。其中,Toll样受体(TLR)是肿瘤免疫激活的有效靶点之一。然而,由于核酸结构特性,胞内TLR的激活配体却面临着体内递送问题,如结构不稳定易被核酸酶降解、亲水性和负电性使其难以透过细胞膜被细胞摄取、外源性核酸分子的免疫原性引发机体免疫识别清除等,限制了其转化和应用。目前,研究人员已开发出多种核酸载体,但这些载体材料潜在的安全性问题却也令人担忧。例如,阳离子脂质体/聚合物表面的高阳离子容易导致细胞膜破裂引起机体细胞损伤、病毒载体中病毒蛋白的致癌性和生物毒性风险、合成材料的免疫原性及体内代谢问题。因此,具有高生物相容性的铁蛋白是极具潜力的核酸药物载体材料。
为了解决天然铁蛋白负电性对核酸装载的限制,相关研究尝试对铁蛋白进行正电修饰以提高其核酸亲和力。但是,铁蛋白外表面改造存在引发免疫原性的风险,而内表面融合正电肽存在占据内腔空间进而降低核酸装载量的问题。鉴于此,研究团队基于铁蛋白结构分析,通过基因工程设计,以点突变的方式针对性将位于铁蛋白内表面的负电氨基酸替换为正电氨基酸,构建了一系列具有不同突变位点和数目的内腔正电铁蛋白。通过核酸装载能力的系统性评估,从中优选具有高稳定性和核酸装载能力的铁蛋白突变体(E61K/E64R/E140K/E147K)作为核酸载体。实验结果表明,该铁蛋白载体对不同类型TLR(TLR3、TLR7/8和TLR9)核酸配体都表现出普适且高效的装载能力,显著改善TLR核酸配体的体内外递送效率,实现高效的细胞摄取、特异的胞内定位和增强的免疫激活作用。此外,铁蛋白载体独特的笼状空间结构为多功能免疫治疗提供了一体化平台。在铁蛋白载体内部装载TLR9核酸配体CpG作为免疫佐剂的基础上,研究人员进一步在其外表面化学偶联光动力光敏剂二氢卟吩作为肿瘤免疫原性死亡的诱导剂以实现协同免疫。在荷瘤小鼠模型中,基于铁蛋白载体的免疫联合治疗有效激活了系统性抗肿瘤免疫响应,显著抑制了双侧瘤生长及远端转移的发生。更重要的是,铁蛋白载体在体内外都表现出良好的生物安全性。该研究不仅拓宽了铁蛋白药物载体的载药谱,还为高效递送核酸药物提供了新策略。
论文链接
铁蛋白-核酸递送系统及其增效抗肿瘤免疫的示意图
本文来自【中国科学院】,仅代表作者观点。全国**信息公共平台提供信息发布传播服务。
ID:jrtt
铁蛋白-核酸递送系统增强肿瘤免疫治疗研究取得进展,转铁蛋白靶向性
新冠病毒是人造的吗?
大自然不会自己进化出连续四个带正电荷的氨基酸的蛋白质吗?
挪威病毒学家 Birger s ? rensen 和英国一位研究肿瘤和艾滋病的院士Angus Dalgleish声称他们早就发现了新冠病毒是人造的证据,但是他们的学术成果一直被打压没有被任何正式的学术刊物认可。现在,随着美国为首的国家再次渲染新冠病毒实验室泄漏论,这两位科学家又开始活跃起来,并大肆宣扬自己的研究成果被科学界迫害不能发表。
许多新闻报道了这件事,但却没有任何实质性的内容,我找了好半天,终于在一个报道中找到一点干货。英国这位院士在接受《每日邮报》采访时声称,他们之所以认为新冠病毒是人造的,原因之一是“大自然不允许四个带正电荷的氨基酸连续出现”(The laws of physics say that you can not have four positively charged amino acids in a row.)。
主要的带正电荷的氨基酸是碱性氨基酸,一共有三种(某些氨基酸在特定条件下也可能带正电),它们是精氨酸、组氨酸和赖氨酸,它们的单字母缩写符号是R、H、K。连续四个氨基酸的话,一共有81种可能的排列。
现在,让我们打开NCBI( 美国国家生物技术信息中心)的BLAST*页面,选择蛋白质BLAST,并选择swissprot蛋白质序列数据库。我随手输入了RRRR,马上跳出了一大堆含有连续出现四个RRRR带正电荷氨基酸的蛋白质,包括很多物种,我选了一个人类(Homo??sapiens)的例子(图四)。看来这位英国院士已经找到了人类不是进化而来的,而是由上帝或者外星人制造的证据了。因为,The laws of physics say that you can not have four positively charged amino acids in a row.
而且更奇怪的是,根据发表在uniprot网站——学术界非常知名的高质量且免费的蛋白质序列与功能信息数据库——中新冠病毒spike蛋白(帮助病毒进入细胞的蛋白),也是这两位科学家重点研究的蛋白的序列(图五)中,我竟然没有找到连续四个带正电荷的氨基酸残基!连续四个RHK的任意组合,我一个都没有找到,RKR已经是我能找到的连续带正电荷的序列了,也只有三个,哪来的四个?
*BLAST全称Basic Local Alignment Search Tool,即“基于局部比对算法的搜索工具”,是生物信息学常用算法,可将输入的核酸或蛋白质序列与数据库中的已知序列进行比对,获得序列相似度等信息,从而判断序列的来源或进化关系。#新冠肺炎#
主题测试文章,只做测试使用。发布者:氨基酸肥料,转转请注明出处:https://www.028aohe.com/22831.html