氨基酸极性大小
科普作家Bethany Halford在博客上详细讲述了辉瑞的重磅COVID-19口服抗病毒药Paxlovid的开发过程,这个发现过程是个精彩绝伦的科学故事。
我一直对抗病毒小分子充满兴趣,所以我十分关注这些药物的开发,并一直在微博上报道。我之前讲过开发历经十几年的HIV重磅抗病毒药—HIV衣壳抑制剂GS-6207的发现过程。而这里的高活性抗病毒药Paxlovid的开发,只用了不到两年。其开发过程可以说是抗病毒小分子药物研发的另一个典范。我虽然对药物化学很感兴趣,但毕竟不是药化出身,希望学药化的同行指正。
Paxlovid可将COVID-19住院或死亡的风险降低88%,并且这是目前唯一可以降低病毒载量的小分子抗病毒药。随着高度传染性Omicron突变株导致COVID-19病例在世界范围内激增,医生们希望Paxlovid能成为一些患者的生命防线。上个月底FDA授权了Paxlovid的紧急使用(EUA),联邦政府立刻购买了2000万个疗程的药物。辉瑞宣布计划在今年进行1.2亿个疗程的生产,并寻求FDA的全部通过。
这个药物开发的故事开始于2020年3月13日,辉瑞美国麻省剑桥分布的英国裔药物化学家Dafydd Owen被要求在家上班(WFH),那时辉瑞关闭了大量办公室和实验室,并要求员工在家上班。而Owen的经理让他在家筹划开发抗病毒小分子,以应对疫情。Owen作为资深的药物化学家从英国剑桥大学获得有机合成博士学位,并在辉瑞公司工作了22年。11年前他移居美国,进入辉瑞的麻省剑桥分部。他擅长药物化学最经典的药物,酪氨酸激酶药物的高通量筛选(HTS)及开发。酪氨酸激酶靶点药物的开发,是药物化学领域最经典的开发案例,Janet Rowley发现慢性粒细胞白血病患者有异位形成的费城染色体表达酪氨酸激酶,瑞士诺华公司的靶向酪氨酸激酶的药物格列卫(Gleevec,imatinib)的开发故事被传颂了几十年
在这里之所以要谈格列卫,是因为开发抗病毒和开发抗肿瘤小分子药物具有共性,就是药物往往针对病毒和肿瘤的异常的酶结构,根据酶分子的构象设计和筛选药物。Owen之前没有开发过抗病毒药,对从头开发一种抗病毒药毫无头绪,但是他的酶化学及HTS经验赋予了他独特的创新视角。在周末疯狂补习抗病毒药物开发的同时,辉瑞公司决定优先开发SARS-CoV-2的主要蛋白酶3CL(Mpro)。
3CL的主要功能是切割病毒的复制酶replicase多蛋白pro-protein,经3CL切割后的replicase才具有功能。辉瑞之所以选择该靶点进行开发,主要是因为在2002-2003年非典疫情中,辉瑞开始开发SARS抗病毒药PF-00835231,PF-00835231的靶点是SARS-CoV的蛋白酶。PF-00835231始终没有进行临床试验,因为PF-00835231临床前开发时,SARS疫情已经结束。
PF-00835231是一个药物化学中的多肽类小分子药物,其富含氢键,具有极性表面,无法被肠道吸收,因此要将其改造成为口服SARS-CoV-2药物需要进行一系列化学修饰。这便是Owen团队面临的最大挑战。Owen最终于2020年4月重返实验室,在之后的13个月,他在家里设置了临时办公室,主要设计和讨论如何使PF-00835231及其抗病毒衍生物获得口服特性,其中一个策略是消除氢键供体,Owen团队由此运用了系统化学修饰,逐一消除氢键供体,再检测消除氢键后的每一个化合物的功能。该团队从PF-00835231中消除的第一个氢键供体是α-羟甲基酮。该位点与3CL中的半胱氨酸发生共价反应,因此药化专家推断他们可以将其替换为不是氢键供体的不同反应基团。他们选择了两个系列的化合物:一个具有苯并噻唑-2-基酮作为反应基团,另一个含有腈的反应基团。 直到药物活性实验接近尾声,化学家才在两者之间进行选择。
另一个重要的氢键供体位于PF-00835231的亮氨酸部分。Owen团队决定用可以消除N-H健的环状氨基酸替换该部分。为了实现类亮氨酸结合,该基序还具有一个带有两个甲基的稠合环丙基环。计算机辅助药物设计表明该结构将插入酶结合位点。而幸好这种设计有个先例:先灵葆雅曾在丙型肝炎(HCV)抗病毒药物boceprevir中使用过它。
这个化学修饰实际上是该工作最关键的部分。Owen评价说环化是有机合成中的大决战,它直接这个药物设计的成败,因为一旦分子环化后,化学修饰无法再改变分子构象。事实证明,这一设计是成功的,但代价是消除氢键后,该分子与蛋白酶口袋中的甘氨酸结合减弱,造成了药物活性的降低。为了恢复与甘氨酸的相互作用,研究团队将PF-00835231的吲哚进行了各种置换尝试,包括甲磺酰胺、乙酰胺和三氟乙酰胺。 这三个分子看起来很相似,但只有三氟乙酰胺的置换产物能被肠道吸收。
高中生物氨基酸讲解
一、组成蛋白质的20种氨基酸的分类
1、非极性氨基酸
包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸
2、极性氨基酸
极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸
酸性氨基酸:天冬氨酸、谷氨酸
碱性氨基酸:赖氨酸、精氨酸、组氨酸
其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸
属于亚氨基酸的是:脯氨酸
含硫氨基酸包括:半胱氨酸、蛋氨酸
注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组
二、氨基酸的理化性质
1、两性解离及等电点
氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。
2、氨基酸的紫外吸收性质
芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。
3、茚三酮反应
氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。
三、肽
两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。
多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。
人体内存在许多具有生物活性的肽,重要的有:
谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。

生化学笔记之氨基酸,高中生物氨基酸讲解
植物生长调节剂
GA3(赤霉素)主要用于促进作物的生长发育,提早成熟,提高产量和打破种子、块茎、鳞茎等器官的休眠,促进发芽、分蘖、抽苔,提高果实结果率。
2,4-D(丁酯)为苯氧乙酸类激素型选择性除草剂, 有良好的展着性和内吸性。通常用于水田和麦田等,主要防除禾本科作物田中的双子叶杂草、异性莎科及某些恶性杂草,如鸭舌草、眼子菜、小三棱草、蓼、看麦娘、豚草、野苋、藜等。
CCC(矮壮素)是一种季铵盐类植物生长调节剂。可用于小麦、水稻、棉花、烟草、玉米及西红柿等作物,抑制作物细胞伸长,但不抑制细胞分裂,能使植株变矮,杆茎变粗,叶色变绿,可使作物耐旱耐涝,防止作物徒长倒伏,抗盐碱,又能防止棉花落铃,可使马铃薯块茎增大。
B9(丁酰肼)为植物生长延缓剂,具有杀菌作用,应用效果广泛,可用作矮化剂、坐果剂、生根剂与保鲜剂等。处理植物后,能被吸收、运输与分配到植物各个部位。丁酰肼的最初效应是抑制生长素的合成,抑制植物体内生长素的运输和赤霉素的生物合成。
6-BA(苄氨基嘌呤)是第一个人工合成的细胞分裂素。具有抑制植物叶内叶绿素、核酸、蛋白质的分解,保绿防老;将氨基酸、生长素、无机盐等向处理部位调运等多种效能,广泛用在农业、果树和园艺作物从发芽到收获的各个阶段。
IAA(吲哚乙酸)对植物抽枝或芽、苗等的顶部芽端形成有促进作用。
NAA(萘乙酸)是一种广谱植物生长调节剂。可用于小麦、水稻增加有效分蘖,提高成穗率,促进籽粒饱满,增产显著。也用于甘薯、棉花增产。用于茄类和瓜类,可防止落花落果和形成无籽果实,还能增加植物抗旱涝、抗盐碱、抗倒伏能力。
TIBA(三碘苯甲酸)被称为抗生长素。阻碍植物体内生长素自上而下的极性运输,易被植物吸收,能在茎中运输,影响植物的生长发育。抑制植物顶端生长,使植物矮化,促进侧芽和分蘖生长。高浓度时抑制生长,可用于防止大豆倒伏;低浓度促进生根;在适当浓度下,具有促进开花和诱导花芽形成的作用。
主题测试文章,只做测试使用。发布者:氨基酸肥料,转转请注明出处:https://www.028aohe.com/20805.html